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Abstract
Pyrazinoic acid or pyrazine-2-carboxylic acid (PA), due to its nitrogenous heteroaromatic ring, can be explored as an
anticancer agent. Here, a series of twenty novels PA derivatives have been synthesized and characterized using IR,
NMR, and mass spectrums. Their cytotoxic activity was evaluated against three different cancer cell lines, including
lung (A549), breast (MCF-7), and colon (HT-29). P16, the most potent compound, showed moderate cytotoxicity with
IC50 of 6.11 μM, 10.64 μM, and 14.92 μM, against the A549, MCF-7, and HT-29 cell lines, respectively. Furthermore,
the effect of this compound against MRC5 as a non-tumoral lung cell line, exhibited a selectivity index of 9.02. The
apoptotic induction activity of P16 was also performed on the A549 cell line. The results showed that as the
concentration of the compound increases (from 3 to 6 μM), the percentage of induction of apoptosis increases from
8.54% to 72.4%. Electrophoretic gel mobility shift assays showed that P16 was also able to ROS induce DNA
cleavage in the presents of H2O2 (1.0 mM) in dose-dependent manner. Molecular docking was also applied to
anticipate the binding locations and the binding of the synthesized compound with Bcl-2 apoptosis regulator and
DNA as their proposed targets.

1. Introduction
The raising number of cancer patients throughout the world encourages medicinal chemists to seek novel
anticancer agents. The global burden of cancer prevalence and death is steadily rising. In general, an estimated
28.4 million new cases of cancer are predicted in 2040, a 47 percent raise over the corresponding 19.3 million cases
in 2020, assuming local rates remain stable in 2020 [1]. DNA contains all genetic information, including cell
replication and transcription [2]. Thus, DNA is a significant target for anticancer therapies. Recently, studies have
been directed at the interaction of chemicals with this target, causing DNA damage by stopping cancer cells from
rapidly dividing. Small heterocyclic molecules interact with DNA through two grooves that run the length of the DNA
double helix [3, 4]. The efficiency of DNA cleavage can be improved using promising coordination compounds,
which usually include DNA. The disturbance in the apoptotic pathway has been identified as a characteristic of
cancer. [5]. Development of new anticancer agents for apoptosis reactivation methods, which can be used to treat a
variety of cancers [6]. Cell shrinkage, and nuclear DNA fragmentation are common biochemical markers of
apoptosis [7].

The various nitrogen heterocyclic rings have recently exhibited extraordinarily complicated biological characteristics,
making them one of the most influential groups of medical chemistry molecules [8]. Pyrazinoic acid or pyrazine-2-
carboxylic acid (PA) can be explored as an anticancer agent due to its heterocyclic pyrazine ring. Its derivatives have
a wide range of biological activities, such as anti-tuberculosis [9], hepatitis C [10], antidepressant [11], antitumor [12],
antifungal-antitumor [13], Antiviral [14].

The structure modification of PA may be utilized to convert its antibacterial to anticancer activity. Since then,
derivatives of PA have been recognized as an alteration of DNA methylation and apoptosis. Recently, PA was used
to treat colorectal cancer (CRC). Treatment with PA ameliorated the metabolic changes caused by CRC, indicating
that it has an acceptable anti-proliferative effect [15]. Bortezomib is a combination of PA, phenylalanine, and
boronic acid that has been approved by the FDA for the treatment of multiple myeloma. One of the most important
pathways of bortezomib associated with antitumor efficacy is a proteasome inhibitor that could improve signal
transduction and apoptosis [16].
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In this study, we designed and synthesized novel PA derivatives utilizing the Passerini multicomponent reaction. The
compounds were identified by Fourier transform infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (1H-
NMR, 13C-NMR), and Mass spectrometry (MS), as well as physical properties determination such as appearance,
and melting point. Furthermore, their cytotoxicity was evaluated against three cancer cell lines, A549 (lung cancer),
MCF7 (breast cancer), and HT29 (colon cancer), as well as non-tumorigenic lung cell line (MCR5). To experimentally
evaluate the DNA-binding activity of the compound, the electrophoretic mobility shift assay was performed. The
effects of the most cytotoxic compounds (P5 and P16) on the induction of apoptosis in the A549 cell line were also
investigated. Using molecular docking, the binding energy of the synthesized compounds, as well as their types of
interactions had been studied with Bcl-2 apoptosis regulator and DNA as their proposed targets.

2. Results And Discussion

2.1. Chemistry
The general synthetic strategy employed to synthesized the PA derivatives was based on the passerine
multicomponent reaction [17] under normal state, using isocyanide, different aldehyde derivatives, and PA (Scheme
1). To purify the product, the recrystallization process, using a combination of methanol and water, or plate
chromatography using 230–400 mesh silica gel, and a solution of 50% ethyl acetate and 50% n-hexane, was
applied. The obtained compounds were characterized using (IR, 1HNMR, 13CNMR, and Mass) spectrums. The
existence of a chloro pattern (1:2) was also convincingly demonstrated by mass spectrometry (MS).

2.2. Anticancer activity

2.2.1. In vitro cytotoxic activity
In this study, novel PA derivatives were designed, synthesized and their cytotoxic activity against three human
cancer cell lines such asA549 (lung), MCF7 (breast), and HT-29 (colon) was evaluated. To demonstrate their
selectivity among normal and cancerous cell lines, the cytotoxicity of these compounds was also assessed against
a normal lung cell line (MRC5). Almost all of the synthesized compounds had shown higher anti-proliferative activity
than PA. Of twenty synthesized compounds, P16 has shown promising anticancer activity with IC50 of 6.11 µM,
10.64 µM, and 14.92 µM against the A549, MCF-7, and HT-29 cell lines, respectively. Also, P5 showed moderate
cytotoxicity with IC50 of 14.09 µM, 8.90 µM, and 16.38 µM, against A549, MCF7-7, and HT-29 cell lines, respectively.
P5 exhibited higher cytotoxicity than P16 against the MCF-7 cell line (Table 1).
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Table 1
In vitro cytotoxic activity of the synthesized compounds against three cancerous cell lines: A549,

MCF-7, and HT-29, as well as a normal lung cell line (MRC5).
Name IC50 (µM ± SD) Selectivity-Index1

A549 MCF-7 HT-29 MRC5

P1 44.19 ± 0.01 61.82 ± 1.54 55.41 ± 1.11 98.76 ± 1.53 2.23

P2 61.62 ± 0.76 68.86 ± 0.78 49.19 ± 0.03 100.36 ± 0.64 1.62

P3 97.11 ± 0.19 53.71 ± 1.38 35.34 ± 0.82 > 100 -

P4 47.10 ± 0.69 47.54 ± 0.03 13.51 ± 0.31 > 100 -

P5 14.09 ± 0.66 8.90 ± 0.84 16.38 ± 0.74 81.90 ± 2.18 5.18

P6 43.57 ± 1.20 22.18 ± 1.03 26.53 ± 1.04 93.54 ± 0.06 2.14

P7 > 100 > 100 - > 100 -

P8 > 100 > 100 - > 100 -

P9 > 100 > 100 - > 100 -

P10 98.69 ± 1.18 92.97 ± 0.19 - > 100 -

P11 > 100 > 100 - > 100 -

P12 > 100 97.27 ± 0.38 - > 100 -

P13 97.02 ± 0.17 67.50 ± 0.41 - > 100 -

P14 78.15 ± 0.82 39.82 ± 0.32 39.65 ± 0.09 > 100 -

P15 86.24 ± 0.59 36.14 ± 0.62 22.20 ± 0.93 > 100 -

P16 6.11 ± 0.05 10.64 ± 0.84 14.92 ± 0.09 55.14 ± 1.11 9.02

P17 40.09 ± 0.66 31.70 ± 0.02 17.47 ± 2.8 94.28 ± 1.35 2.35

P18 > 100 > 100 - > 100 -

P19 > 100 > 100 - > 100 -

P20 71.21 ± 1.88 38.84 ± 0.22 35.64 ± 0.43 > 100 -

PA2 > 100 > 100 > 100 - -

Cisplatin 9.37 ± 1.43 15.72 ± 1.38 89.48 ± 3.65 14.67 ± 1.38 1.56

1IC50 for MRC-5 cell line/IC50 for A549 cell line

2Pyrazinoic Acid

Cisplatin, one of the most efficient anticancer drugs, was chosen as a reference drug in this study. As shown in
Table 2, cisplatin IC50 is 9.37 µM, 15.72 µM, and 89.48 µM against the A549, MCF-7, and HT-29 lines, respectively.
One-way ANOVA statistical analysis showed that the differences between the IC50 of cisplatin, and P16 are
statistically significant in all the studied cell lines. Thus, P16 showed higher anti-proliferative activity than cisplatin
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in all the studied cell lines. On the other hand, P5 was also shown higher cytotoxicity in comparison to cisplatin in
MCF-7, and HT-29 cell lines.

MRC5, a normal epithelial lung cell line, is utilized to evaluate the toxicity of the synthesized compounds on normal
cells and determine the selectivity index between cancerous and normal cells. All the synthesized compounds,
particularly P1, P2, P5, P6, P16, and P17 with a selectivity index of 2.23, 1.62, 5.18, 2.14, 9.02, and 2.35, respectively,
demonstrated higher selectivity for human lung cancer cells while causing less harm to normal epithelial lung cells.
Obviously, this series of compounds showed a better selectivity index and therapeutic window than cisplatin.

2.2.2 Structure-activity relationship
The activity of the synthesized PA derivatives illustrates that substituted by both electron-withdrawing groups like (F,
Cl, Br, and NO2) and electron-donating groups like (OCH3, Me) in the B-ring of the structure have a promising impact
on the cytotoxic activity against all the studied cancer cell lines. For example, P16, which has a chloro group in the B
ring, has higher cytotoxic activity on the A549, MCF-7, and HT-29 cell lines than the other halo groups. However, the
movement of the chloro group in ring B from para to meta, and ortho reduced the inhibitory effect on the studied
cancer cell lines. The presence of one Cl group on the B ring showed good to moderate cytotoxic activity (IC50 < 40 M
in MCF-7 and HT-29 cell lines). Besides, by inserting the chloro group in positions 2 and 4, such as P17, a suitable
compound in terms of in vitro cytotoxicity activity is produced, although weaker than P16. In all the studied cancer
cell lines, substituting withdrawing groups like halogens in the B-ring in the order of Cl > Br > F, can affect the
antitumor activity of compounds. P10, with NO2 group in 2, and 4 positions, showed weak anticancer activity. Also,
the placement of other electron-withdrawing groups such as nitro did not show effective activity on the studied
cancer cell lines. On the other hand, when an electron donor groups such as methoxy (OCH3), is embedded in the B
ring as illustrated in the (P1-P6) compounds, it shows significant cytotoxic activity against studied cancer cell lines.
As evident in P5, which encompasses OCH3 in 2 and 5 positions, the highest antitumor activity is observed in the
MCF-7 cell line. The P4 with the OCH3 group in 3 and 4 positions in the B ring has the most potent anticancer
activity against the HT-29 cell line.

2.2.3. apoptosis assay using flow cytometry
Here, we applied the AnnexinV/PI kit to evaluate the effect of P5, and P16, as the most potent antitumor
compounds, on the apoptosis induction against A549 cell lines. As shown in Fig. 1, with the rise in the concentration
of P5 from 7.0 to 14.0 µM, the percentage of cells in the apoptotic process increases significantly from 0.6 percent
in untreated cells to 4.27%, and 42.7% in treated cells. On the other hand, p16 at concentrations of 3 µM, and 6 µM
was used to induce apoptosis and the percentage of apoptotic cells is significantly increased from 8.28% at 3 µM to
72.4% at 6 µM. Although both compounds cause apoptotic cell death, P16 is more potent than P5. These findings
showed that, P16, and P5 could induce programmed cell death in a concentration-dependent manner in A549.
Hence, parts of their cytotoxic effects go through apoptosis induction.

2.2.4. Gel electrophoresis study
Gel electrophoresis has been carried out to monitor the cleavage of DNA by selective synthesized compounds. The
experiment followed a technique that had already been reported in the literature [18]. It’s well defined that there has
been large accumulation of H2O2 in several tumor tissues [19] and it was reported earlier that some complexes like
Cu, and Pt containing compounds [20] induced DNA cleavage activity in the presence of reducing agents like H2O2,
we also explored the possible nuclease activity of P5, and P16 in the presence of H2O2.
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As shown in Fig. 2A, B, P5 was failed to induce DNA cleavage independently. It was unable to ROS induce DNA
cleavage in the presents of H2O2 (1.0 mM) and it was unable to displace with safe stain in DNA supercoil. On the
other hand, Fig. 2C, D shows that, P16 was unable to induce DNA cleavage independently. However, it was able to
ROS induce DNA cleavage in the presents of H2O2 (1.0 mM) in dose dependent manner (Fig. 2D). It should be noted
that P16 was unable to displace with safe stain in DNA supercoil.

2.2.5. Molecular docking studies
Recently, pyrazine derivatives have been studied due to their heteroaromatic nature in medicinal chemistry. The
interaction of pyrazine was evaluated using different targets. The results revealed that the nitrogen atoms of
pyrazine have the prominent roles in the binding primarily through acceptor hydrogen bonding [21]. In this study, all
the synthesized compounds were docked conducted to molecular docking studies to understand their interactions
and acquire further information on their molecular binding mechanism with Bcl-2 apoptosis regulator (PDB ID:
6QGK) and DNA (PDB ID: 1LEX).

The interactions of the synthesized PA derivatives with Bcl-2 were explored, and it was found that the most
significant amino acids in binding pyrazine to Bcl-2 were Phe104, Ala149, Met115, and Phe112 (Fig. 3). The main
interaction site of pyrazine was through arene-H, donor hydrogen bonding, and hydrophobic interactions with
Phe104, Met115, and Ala149, respectively. For example, P10 interacts with Bcl-2 through three different interactions,
including hydrophobic interactions, donor hydrogen bonding, and π-Stacking. As seen in Fig. 3A, the pyrazine ring in
P10 via hydrophobic interaction bind to the Leu137 and Ala149, as well as binds to Phe104 through π-Stacking.
There exists a hydrogen bonding between the nitrogen of amid group and Asp111. A hydrophobic interaction
between the cyclohexane ring and Met115 is also observed. There is a hydrogen bonding between the nitrogen of
amid group and Asp111, and a hydrophobic interaction between cyclohexane and Met115. According to Fig. 3A, π-
Stacking binding has also existed between pyrazine with Phe112, and benzene with Phe104. The hydrophobic
interactions between cyclohexane and Phe153, Ala149, and Val133 were also observed.

According to Fig. 3B, P16 has shown hydrophobic interactions between its cyclohexane ring and Phe153, Ala149,
and Val133. There are also existed two stacking binding between pyrazine with Phe112, and benzene with Phe104.

Furthermore, the molecular binding of the synthesized compounds with DNA was also studied. Thymine and
cytosine base was found to have the highest interaction in binding with PA derivatives. Both P10, and P16
compounds are located in the minor groove of DNA. There exists a hydrogen bonding between the carbonyl of
amide group and T8. Also, pyrazine has a donor hydrogen bonding with the C9 base and the nitro group has a
hydrophobic interaction with C6 (Fig. 3C). The main interaction of P16 with DNA was also explored (Fig. 3D). It
interacts through the nitrogen on the pyrazine ring with the T7 base via a donor hydrogen bonding and a carbonyl
ester group via an acceptor hydrogen bonding with the same thymine base (T7). Also, this group has a hydrophobic
interaction with another T8 base. There is also a donor hydrogen bonding between the nitrogen of amide group and
the C9 base (Fig. 3D).

Apart from experimental tests, the validation of the docking protocol was also explored using RMSD. According to
Fig. 4, the RMSD of the co-crystal ligand has been reported as 0.95 Å, and 0.79 Å with Bcl-2 apoptosis regulator, and
DNA, respectively. The ΔGbind values for Bcl-2, ranged from − 7.59 to-6.02 kcal/mol, whereas the ΔGbind values for
DNA ranged from − 9.65 to 4.43 kcal/mol (Table 2).
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The docking binding energies of all the synthesized compounds on Bcl-2, and DNA receptors as well as some ADME
descriptors, especially drug-likeness rules (Lipinski’s rule), which were calculated by DruLiTo are shown in Table 2.
The Lipinsky rule of five (RO5) descriptors such as Molecular Weight (MW), logP, AlogP, H-bond Acceptor (HBA), H-
bond Donor (HBD), Total Polar Surface Area (TPSA), Active Metabolic Rate (AMR), and the number of Rotatable
Bonds (nRB), intrinsic solubility (log S), and gastrointestinal absorption (GA) were calculated for all the synthesized
compounds. All compounds pass the drug-likeness filter, which is based on Lipinski's rule of five (Table 2).

Table 2
The docking binding energies as well as some ADME descriptors of all the synthesized compounds.

Name Molecular
docking
(kcal/mol)

MW logP Alogp HBA HBD TPSA AMR nRB logS GA

BCL-
2

DNA

P1 -6.99 -9.25 345.99 0.73 -2.928 7 0 77.32 94.4 8 -3.69 High

P2 -6.98 -9.01 345.99 0.52 -2.928 7 0 77.32 77.32 8 -3.69 High

P3 -6.74 -8.90 345.99 0.52 -2.928 7 0 77.32 77.32 8 -3.69 High

P4 -6.83 -8.71 373.98 0.76 -3.427 8 0 86.55 86.55 9 -3.77 High

P5 -6.68 -9.16 373.98 0.76 -3.427 8 0 86.55 86.55 9 -3.77 High

P6 -6.80 -6.90 401.98 1 -3.925 9 0 95.78 95.78 10 -3.85 High

P7 -6.63 -6.17 363.99 0.708 -2.216 6 0 111.23 111.23 8 -3.68 High

P8 -6.84 -7.42 363.99 0.497 -2.216 6 0 111.23 111.23 8 -3.68 High

P9 -6.84 -7.39 363.99 0.497 -2.216 6 0 111.23 111.23 8 -3.68 High

P10 -6.02 -4.43 409.98 0.714 -2.003 6 0 154.37 154.37 9 -3.76 LOW

P11 -7.00 -9.22 336.99 0.607 -2.52 6 0 68.09 68.09 7 -3.77 High

P12 -7.08 -9.17 336.99 0.396 -2.52 6 0 68.09 68.09 7 -3.77 High

P13 -6.89 -9.09 336.99 0.396 -2.52 6 0 68.09 68.09 7 -3.77 High

P14 -7.05 -9.06 352.96 1.068 -2.061 6 0 68.09 68.09 7 -4.21 High

P15 -7.16 -9.64 352.96 0.857 -2.061 6 0 68.09 68.09 7 -4.21 High

P16 -7.19 -9.39 352.96 0.857 -2.061 6 0 68.09 68.09 7 -4.21 High

P17 -7.59 -8.25 387.93 1.434 -1.692 6 0 68.09 68.09 7 -4.81 High

P18 -7.27 -9.16 329.99 1.305 -1.983 6 0 68.09 68.09 7 -3.91 High

P19 -6.98 -9.17 317.99 0.913 -2.429 6 0 68.09 68.09 7 -3.61 High

P20 -7.32 -9.65 396.91 1.033 -1.977 6 0 68.09 68.09 7 -4.52 High

Molecular Weight (MW), H-Bond Acceptor (HBA), H-Bond Donor (HBD), Total Polar Surface Area (TPSA), Active
Metabolic Rate (AMR), number of Rotatable Bonds (nRB), intrinsic solubility (log S), and gastrointestinal
absorption (GA)
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3. Conclusion
In general, PA derivatives were successfully synthesized using the Passerini multicomponent reaction. The
compounds were entirely characterized by (IR, 1HNMR, 13CNMR, Mass) spectrums. These PA derivatives were
evaluated for cytotoxic activity against three different cell lines, including lung (A549), breast (MCF-7), and colon
(HT-29) and one normal human lung cell line (MRC5). The findings of this study indicated satisfying selectivity of
the compounds between the cancerous cell and non-cancerous cell line (MRC5). P5, and P16 have high efficacy in
suppressing cell growth and considerably more potent in vitro cytotoxic activity than cisplatin and the others.
Electrophoresis mobility shift assay revealed that P16 was able to ROS induce DNA cleavage in the presents of
H2O2 (1.0 mM) in dose-dependent manner. P5, and P16 can significantly cause apoptosis in A549 cells via a dose-
dependent manner. The molecular docking studies of the synthesized compounds on Bcl-2 apoptosis regulator and
DNA were also conducted and their interactions and further information on their molecular binding mechanism were
acquired. These compounds (especially P5, and P16) have the ability to play an essential role in the future treatment
of cancer diseases after further clinical studies.

4. Methods And Experimental

4.1. General
All chemical reagents and solvents were acquired from Merck Chemical or Sigma Aldrich. The passerine
multicomponent reaction was used to synthesize the novel PA derivatives. To purify the product, the recrystallization
process, which uses a combination of methanol and water, or chromatography plate, using 230–400 mesh silica gel
and solution of 50% ethyl acetate and 50% n-hexane, was applied. The advance of the reaction was monitored by
TLC. It was conducted on silica gel polygrams SIL G/UV 254 plates. The analysis of the compound was recorded by
IR spectra were run on a (Bruker's VERTEX 70 Series FTIR Spectrometers) and the 1H-NMR and 13C-NMR spectra
were run on a Bruker Avance DPX 300, 500 FT-NMR spectrometers. Chemical shifts were reported in parts per million
(ppm), down filed from tetramethylsilane coupling constant (J) values in Hz, and spin multiplicities were denoted by
the letters s (singlet), d (doublet), t (triplet), and m (multiple) (multiplet). Mass spectrum recorded by Manufacturer
Company Agilent Technology – (HP)-MS Model: 5973).

4.2. Synthesis of Pyrazinoic acid analogs
Firstly, 1 mmol of pyrazinoic acid was dissolved in 5 ml of water by heating. Then 1 mmol of aldehyde derivatives
and 1.2 mmol isocyanide were added to the reaction mixture, and stirred at room temperature for 4 to 48 hours. The
solid obtained was washed with water and filtered and dried in a desiccator. For purification, recrystallization
(methanol and water) or plate chromatography (silica gel with 50% ethyl acetate and 50% n-hexane) was applied.

Below are the physical and spectral data of the synthesized compounds:

4.2.1. 2-(cyclohexylamino)-1-(2-methoxyphenyl)-2-oxoethyl
pyrazine-2-carboxylate (P1)
Yield: 77%, mp: 134–136°C, white solid. IR (KBr disk): (3272.91 (NH amid group)), (3100.26-3029.84 (CH aromatic)),
(2930.78-2854.42 (CH aliphatic)), (1727.87 (C = O ester)), (1655.64 (C = O amid)), (1612.47-1458.08 (C = C
aromatic)), (1274.32 (C-O)) cm-1. 1H NMR (499 MHz, DMSO-d6) δ (9.23 (s, 1H)H6’), (8.86 (d, J = 42.6 Hz, 3H)H3’,H2’),
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(8.07 (d, J = 7.6 Hz, 1H) NH), (7.39 (t, J = 7.2 Hz, 1H) H6, (7.17–6.85 (m, 3H)(H3,H4,,H5), (6.46 (s, 1H)CH group, (3.81
(s, 3H)H(ome)[O]), (3.60 (s, 1H) H1”), (1.85–1.41 (m, 6H)H2”,H6”,H4”), (1.18 (q, J = 52.4, 18.1, 11.3, 10.6 Hz, 3H)H3”H5”).
13C NMR (126 MHz, dmso) δ 165.98, 162.79, 157.16, 148.15, 145.56, 144.74, 142.56, 130.31, 128.40, 123.24,
120.26, 111.25, 70.90, 55.51, 47.70, 39.02, 31.89, 24.96, 24.34.

4.2.2. 2-(cyclohexylamino)-1-(3-methoxyphenyl)-2-oxoethyl
pyrazine-2-carboxylate(P2)
Yield: 80%, mp: 173–175°C, white solid. IR (KBr disk): (3272.91 (NH amid group)), (3100.26-3029.84 (CH aromatic)),
(2930.78-2854.42 (CH aliphatic)), (1727.87 (C = O ester)), (1655.64 (C = O amid)), (1612.47-1458.08 (C = C
aromatic)), (1274.32 (C-O)) cm− 1. 1H NMR (499 MHz, DMSO-d6) δ (9.30 (s, 1H) H6’, (8.90 (dd, J = 35.3, 1.7 Hz,

3H)H3’,2’), (8.27 (d, J = 7.6 Hz, 1H) NH), (7.35 (t, J = 8.0 Hz, 2H) H5), (7.17 (d, J = 7.4 Hz, 2H) H2), (7.04–6.88 (m,
2H)H4,6), (6.09 (s, 1H) CH*), (3.77 (s, 1H) H1”), (3.52 (s, 1H) H1”), (1.85–1.41 (m,5H) H2”,4”,6”), (1.35–0.98 (m, 4H)
H5”,3”). 13C NMR (126 MHz, dmso) δ 166.74, 163.22, 159.65, 148.85, 146.29, 145.45, 143.14, 137.39, 130.09, 119.95,
114.39, 113.70, 76.65, 55.62, 48.23, 40.50, 40.34, 40.17, 40.00, 39.84, 39.67, 39.50, 32.68, 32.50, 25.59, 24.93, 24.84.

4.2.3. 2-(cyclohexylamino)-1-(4-methoxyphenyl)-2-oxoethyl
pyrazine-2-carboxylate(P3)
Yield: 83%, mp: 182–184°C, white solid. IR (KBr disk): (3252.47 (NH amid group)), (3080.85-3029.84 (CH aromatic)),
(2929.16-2851.53 (CH aliphatic)), (1744.23 (C = O ester)), (1656.08 (C = O amid)), (1603.72-1463.43 (C = C
aromatic)), (1261.32 (C-O)) cm-1. 1H NMR (300 MHz, DMSO-d6) δ (9.21 (d, J = 29.2 Hz, 1H) H6’), (8.98–8.58 (m, 4H)

H3,H2’), ( 8.21 (d, J = 7.4 Hz, 1H)NH), (7.50 (d, J = 8.3 Hz, 2H)H2,H6), (6.97 (d, J = 8.3 Hz, 2H) H5,H3), (6.05 (s, 1H) CH*

group), (3.50 (s, 3H) H ome[P]), (1.86–1.38 (m, 6H) H1”,2”,4”,6”), (1.36–0.77 (m, 3H) H5”,3”. 13C NMR (75 MHz, DMSO) δ
166.65, 162.83, 159.57, 148.33, 145.78, 145.53, 144.95, 144.49, 142.73, 129.03, 127.47, 113.84, 76.07, 55.19, 47.71,
40.33, 40.05, 39.77, 39.49, 39.21, 38.93, 38.65, 32.23, 25.12, 24.48.

4.2.4. 2-(cyclohexylamino)-1-(3,4-dimethoxyphenyl)-2-oxoethyl
pyrazine-2-carboxylate(P4)
Yield: 47%, mp: 192–193°C, white solid. IR (KBr disk): (3266.25 (NH amid group)), (3098.33-3029.84 (CH aromatic)),
(2928.16-2852.96 (CH aliphatic)), (1746.36 (C = O ester)), (1655.67 (C = O amid)), (1593.12-1563.43 (C = C
aromatic)), (1258.88 (C-O)) cm− 1. 1H NMR (499 MHz, DMSO-d6) δ (9.28 (s, 1H) h6’, (8.88 (d, J = 36.9 Hz, 2H) H3’,2’),
(8.18 (d, J = 7.7 Hz, 1H) NH), (7.26–7.04 (m, 3H) H2,5), (6.99 (d, J = 8.2 Hz, 1H) H6), (6.04 (s, 1H) CH*), (3.76 (s, 6H) H
ome[ac]), (3.33 (s, 1H) H1”), (1.90–1.43 (m, 6H) H2”,4”,6”, (1.33–0.85 (m,3H) H5”,3”). 13C NMR (126 MHz, dmso) δ
167.01, 163.26, 149.68, 148.99, 148.77, 146.25, 145.41, 143.22, 128.14, 120.71, 112.05, 111.82, 76.75, 56.02, 55.99,
48.18, 40.49, 40.32, 40.15, 39.98, 39.82, 39.65, 39.48, 32.67, 32.52, 25.59, 24.95, 24.87. Elemental analysis calcd (%)
for C21H25N3O5 (399.18):C,63.14; H,6.31; N,10.52;found: C,63.26;H,6.43;N,10.64.

4.2.5. 2-(cyclohexylamino)-1-(2,5-dimethoxyphenyl)-2-oxoethyl
pyrazine-2-carboxylate(P5)
Yield: 49%, mp: 114–117°C, white solid. IR (KBr disk): (3266.25 (NH amid group)), (3098.33-3029.84 (CH aromatic)),
(2928.16-2852.96 (CH aliphatic)), (1746.36 (C = O ester)), (1655.67 (C = O amid)), (1593.12-1563.43 (C = C
aromatic)), (1258.88 (C-O)) cm− 1. 1H NMR (300 MHz, DMSO-d6) δ (9.23 (d, J = 1.3 Hz, 1H) H6’, (9.02–8.73 (m, 2H)
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H3’,2’), (8.10 (d, J = 7.9 Hz, 1H) NH), (7.27–6.79 (m, 4H) H4,3,6), (6.41 (s, 1H) CH*), (3.76 (s, 6H) Ha,c, 3.34 (s, 1H) H1”),
(1.84–1.43 (m, 5H) H2”,4”,6”), (1.18 (dq, J = 29.0, 8.6 Hz, 4H) H5”,3”). 13C NMR (75 MHz, DMSO) δ 166.04, 162.92,
153.00, 151.44, 148.38, 145.79, 144.94, 142.65, 124.28, 114.73, 114.50, 112.62, 70.99, 56.25, 56.19, 55.49, 47.86,
40.33, 40.05, 39.78, 39.50, 39.22, 38.94, 38.67, 32.09, 25.11, 24.55.

4.2.6. 2-(cyclohexylamino)-2-oxo-1-(2,4,6-trimethoxyphenyl)ethyl
pyrazine-2-carboxylate(P6)
Yield: 55%, mp: 99–100°C, white solid. IR (KBr disk): (3266.25 (NH amid group)), (3098.33-3029.84 (CH aromatic)),
(2928.16-2852.96 (CH aliphatic)), (1746.36 (C = O ester)), (1655.67 (C = O amid)), (1593.12-1563.43 (C = C
aromatic)), (1258.88 (C-O)) cm− 1. 1H NMR (499 MHz, DMSO-d6) δ (10.33 (s, 1H)H6’), (9.23 (s, 1H) H3’), (8.86 (d, J = 
43.7 Hz, 1H) H2’), (7.56 (d, J = 8.1 Hz, 1H) NH), (7.37–7.07 (m, 3H) H3), (6.94–6.71 (m, 1H) H5), (6.40 (s, 1H) NH),
(5.84 (d, J = 5.4 Hz, 1H) CH*), (5.13 (d, J = 5.3 Hz, 2H) H5), (3.99–3.56 (m, 9H) Ha,b,c) overlapping multiple), (3.62–
3.49 (m, 1H) H1”, (1.60 (d, J = 68.4 Hz, 3H) H2”,4”,6”), 1.19 (d, J = 62.3 Hz, 2H) H5”,3”). 13C NMR (126 MHz, dmso) δ
189.30, 171.43, 153.52, 151.34, 131.43, 124.77, 123.58, 114.90, 114.30, 113.52, 112.83, 110.70, 68.29, 56.81, 56.58,
56.01, 55.93, 55.77, 47.63, 40.49, 40.32, 40.15, 39.98, 39.82, 39.65, 39.48, 32.80, 32.61, 25.59, 25.11, 25.07.
Elemental analysis calcd (%) for C22H27N3O6 (429.19):C,61.53; H,6.34; N,9.78;found: C,61.54;H,6.44;N,10.65.

4.2.7. 2-(cyclohexylamino)-1-(2-nitrophenyl)-2-oxoethyl pyrazine-
2-carboxylate(P7)
Yield: 84%, mp: 160–162°C, white solid. IR (KBr disk): (3285.07 (NH amid group)), (3093.62-3029.84 (CH aromatic)),
(2931.26-2855.74 (CH aliphatic)), (1730.45 (C = O ester)), (1656.67 (C = O amid)), (1527.37-1559.44 (C = C
aromatic)), (1279.34 (C-O)) cm− 1. 1H NMR (499 MHz, DMSO-d6) δ (9.27 (s, 1H)H6’, (8.90 (d, J = 40.8 Hz, 2H)H3’,2’),
(8.33 (d, J = 7.4 Hz, 1H) NH), (8.11 (d, J = 7.9 Hz, 1H) H3), (7.93–7.54 (m, 3H) H4,5,6), (6.79 (s, 1H)CH*, (3.59 (s, 1H)
H1”), (1.90–1.41 (m, 6H) H6”,4”,2”), (1.17 (ddd, J = 44.4, 20.7, 10.0 Hz, 4H) H3”,5”). 13C NMR (126 MHz, dmso) δ 165.40,
163.06, 149.00, 146.36, 145.49, 142.83, 134.48, 130.70, 130.36, 129.77, 125.43, 72.18, 48.61, 40.32, 40.15, 39.98,
39.82, 39.65, 32.51, 32.47, 25.56, 24.88, 24.83.

4.2.8. 2-(cyclohexylamino)-1-(3-nitrophenyl)-2-oxoethyl pyrazine-
2-carboxylate(P8)
Yield: 90%, mp: 163–165°C, white solid. IR (KBr disk): (3285.07 (NH amid group)), (3093.62-3029.84 (CH aromatic)),
(2931.26-2855.74 (CH aliphatic)), (1730.45 (C = O ester)), (1656.67 (C = O amid)), (1527.37-1559.44 (C = C
aromatic)), (1279.34 (C-O)) cm− 1. 1H NMR (499 MHz, DMSO-d6) δ (9.39–9.13 (m, 1H) H6’), (8.92 (dt, J = 34.5, 1.5 Hz,
3H)H3’,2’, (8.47 (d, J = 12.4 Hz, 1H) H2), (8.27 (d, J = 8.2 Hz, 1H)H4), (8.08 (d, J = 7.5 Hz, 1H) NH), (7.87–7.62 (m, 2H)
H6,5), (6.30 (s, 1H) CH* group, (3.53 (s, 1H)H1”), (1.94–1.39 (m, 6H) H6”,4”,2”), (1.41–0.86 (m, 3H) H5”,3”). 13C NMR (126
MHz, dmso) δ 166.18, 163.06, 148.98, 148.23, 146.40, 145.49, 142.93, 138.05, 134.27, 130.75, 124.14, 122.45,
75.57, 48.34, 40.51, 40.34, 40.26, 40.17, 40.01, 39.84, 39.67, 39.51, 32.62, 32.41, 25.56, 24.85, 24.75. Elemental
analysis calcd (%) for C19H20N4O5 (384.39):C, 59.37; H, 5.24; N,14.58;found: C,58.43;H,4.30;N 13.64.

4.2.9. 2-(cyclohexylamino)-1-(4-nitrophenyl)-2-oxoethyl pyrazine-
2-carboxylate(P9)
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Yield: 85%, mp: 200–202°C, white solid. IR (KBr disk): (3285.07 (NH amid group)), (3093.62-3029.84 (CH aromatic)),
(2931.26-2855.74 (CH aliphatic)), (1730.45 (C = O ester)), (1656.67 (C = O amid)), (1527.37-1559.44 (C = C
aromatic)), (1279.34 (C-O)) cm− 1. 1H NMR (499 MHz, DMSO-d6) δ (9.34 (s, 1H) H6’, (8.90 (d, J = 35.1 Hz, 2H) H3’,2’),
(8.37 (dd, J = 77.1, 7.9 Hz, 3H) H5,3,NH), (7.89 (d, J = 8.2 Hz, 2H) H6,2), (6.28 (s, 1H) CH*), (3.51 (s, 2H)H1’, (1.81–1.33
(m, 6H) H4”,6”,2”), (1.33–0.85 (m, 3H)H5”,3”). 13C NMR (126 MHz, dmso) δ 165.96, 162.99, 148.97, 148.07, 146.40,
145.48, 143.09, 142.89, 128.80, 124.14, 75.76, 48.37, 40.48, 40.31, 40.15, 39.98, 39.81, 39.65, 39.48, 32.62, 32.39,
25.54, 24.84, 24.75.

4.2.10. 2-(cyclohexylamino)-1-(2,4-dinitrophenyl)-2-oxoethyl
pyrazine-2-carboxylate(P10)
Yield: 88%, mp: 197–199°C, white solid. IR (KBr disk): (3334.18 (NH amid group)), (3106.15 (CH aromatic)),
(2937.88-2856.13 (CH aliphatic)), (1744.38 (C = O ester)), (1681. (C = O amid)), (1538.43 (NO2 symmetric stretch)),

(1538.43-1450.11 (C = C aromatic)), (1348.34 (NO2 asymmetric stretch)), (1224.20 (C-O ester)) cm− 1. 1H NMR (499

MHz, DMSO-d6) δ (9.31 (s, 1H) H6’, (9.09–8.69 (m, 3H) H2’,3’,3), (8.57 (d, J = 8.5 Hz, 1H)H5), (8.43 (d, J = 7.5 Hz, 1H)

NH), (8.01 (d, J = 8.6 Hz, 1H) H6), (6.92 (s, 1H) CH*), (3.58 (s, 1H) H1”), (1.98–1.41 (m, 7H) H2”,4”,6”), 1.18 (ddd, J = 
44.5, 20.2, 9.3 Hz, 3H) H5”,3”). 13C NMR (126 MHz, dmso) δ 164.56, 162.91, 149.08, 148.79, 148.07, 146.54, 145.52,
142.70, 136.69, 131.23, 128.50, 120.75, 71.88, 48.82, 40.31, 40.14, 39.97, 39.81, 39.64, 32.47, 32.44, 25.54, 24.86.
Elemental analysis calcd (%) for C19H19N5O7 (429.19):C,53.15; H,4.46; N,16.31;found: C,53.22;H,4.53;N,16.38.

4.2.11. 2-(cyclohexylamino)-1-(2-fluorophenyl)-2-oxoethyl pyrazine-2-carboxylate(P11)

Yield: 55%, mp: 143–145°C, white solid. IR (KBr disk): (3265.97 (NH amid group)), (3100.43 (CH aromatic)),
(2930.03-2854.01 (CH aliphatic)), (1718.87 (C = O ester)), (1656.95 (C = O amid)), (1569.89-1510.03 (C = C
aromatic)), (1187.89 (C-O)), (C-F (967.65)) cm− 1. 1H NMR (499 MHz, DMSO-d6) δ (9.26 (s, 1H) H6’, 8.87 (d, J = 43.6
Hz, 2H) H3’.2’), (8.28 (d, J = 7.6 Hz, 1H) NH), (7.68–7.40 (m, 1H) H5), (7.36–7.06 (m, 1H) H6), (6.40 (s, 1H) CH*),
(3.70–3.44 (m, 1H) H1”), (1.85–1.41 (m, 7H) H2”,4”,6”), (1.19 (ddd, J = 44.5, 22.4, 11.2 Hz, 5H) H5”,3”). 13C NMR (126
MHz, dmso) δ 165.74, 163.18, 161.73, 159.76, 148.90, 146.32, 145.40, 142.94, 131.78, 131.72, 130.12, 125.16,
123.30, 123.19, 116.20, 116.03, 70.68, 48.46, 40.49, 40.32, 40.15, 39.98, 39.82, 39.65, 39.48, 32.54, 32.49, 25.57,
24.98, 24.93. Elemental analysis calcd (%) for C19H20FN3O3 (357.15):C,63.85; H,5.64; N,11.76;found:
C,63.90;H,5.69;N,11.81.

4.2.12. 2-(cyclohexylamino)-1-(3-fluorophenyl)-2-oxoethyl pyrazine-2-carboxylate(P12)

Yield: 54%, mp: 143–145°C, white solid. IR (KBr disk): (3265.97 (NH amid group)), (3100.43 (CH aromatic)),
(2930.03-2854.01 (CH aliphatic)), (1718.87 (C = O ester)), (1656.95 (C = O amid)), (1569.89-1510.03 (C = C
aromatic)), (1187.89 (C-O)), (C-F (967.65)) cm− 1. 1H NMR (499 MHz, DMSO-d6) δ (9.32 (s, 1H)H6’), (9.18 (s, 3H) )
HRing (A,B) overlapping multiple), (9.04–8.70 (m, 3H) H2’,3’,5), (8.30 (dd, J = 19.1, 7.9 Hz, 1H) NH), (7.46 (dq, J = 21.6,
11.4, 9.4 Hz, 2H) H6,4), 7.23 (t, J = 7.6 Hz, 1H) H2), (6.14 (s, 1H) CH*), (1.87–1.41 (m, 5H) H1”,2”,6”), (1.42–0.90 (m, 3H)
H5”,3”). 13C NMR (126 MHz, dmso) δ 166.43, 163.10, 161.44, 148.89, 148.13, 146.35, 146.02, 145.45, 145.07, 143.00,
138.62, 138.56, 131.08, 131.01, 123.75, 116.08, 115.92, 114.61, 114.43, 75.94, 48.27, 40.48, 40.31, 40.15, 39.98,
39.81, 39.65, 39.48, 32.62, 32.43, 25.55, 24.87, 24.78.

4.2.13. 2-(cyclohexylamino)-1-(4-fluorophenyl)-2-oxoethyl pyrazine-2-carboxylate(P13)
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Yield: 56%, mp: 180–182°C, white solid. IR (KBr disk): (3265.97 (NH amid group)), (3100.43 (CH aromatic)),
(2930.03-2854.01 (CH aliphatic)), (1718.87 (C = O ester)), (1656.95 (C = O amid)), (1569.89-1510.03 (C = C
aromatic)), (1187.89 (C-O)), (C-F (967.65)) cm− 1. 1H NMR (300 MHz, DMSO-d6) δ (9.29 (s, 1H) H6’, (9.03–8.71 (m,
2H) H2’,3’), (8.39–8.21 (m, 2H) H2), (8.09 (dd, J = 8.4, 5.7 Hz, 1H) NH), (7.64 (dd, J = 7.6, 4.7 Hz, 2H)H6), (7.47–7.12
(m, 3H) H3,5) overlapping multiple), (6.09 (d, J = 22.8 Hz, 1H) CH*), 3.50 (s, 1H) H1”), (2.15–1.38 (m, 4H) H2”,4”,6”),
(1.12 (dd, J = 30.1, 19.4 Hz, 3H) H3”,5”). 13C NMR (75 MHz, DMSO) δ 166.67, 166.34, 163.99, 163.88, 162.73, 160.63,
148.41, 145.85, 144.97, 142.61, 132.26, 131.85, 131.81, 129.59, 125.79, 116.10, 115.80, 115.53, 115.24, 75.57,
74.95, 47.75, 40.33, 40.06, 39.78, 39.50, 39.22, 38.94, 38.67, 32.20, 32.00, 25.10, 24.43.

4.2.14. 1-(2-chlorophenyl)-2-(cyclohexylamino)-2-oxoethyl pyrazine-2-carboxylate(P14)

Yield: 48%, mp: 138–139°C, white solid. IR (KBr disk): (3308.64 (NH amid group)), (3061.78-3029.67 (CH aromatic)),
(2938.15-2850.61(CH aliphatic)), (1738.85(C = O ester)), (1649.84(C = O amid)), (1536.92-1449.65 (C = C aromatic)),
(1133.88 (C-O)), (755.87 (C-Cl)) cm− 1. 1H NMR (499 MHz, DMSO-d6) δ (8.33 (d, J = 7.7 Hz, 1H) H6’), (7.86 (d, J = 8.0
Hz, 2H)H3’,2’), (7.71–7.23 (m, 6H) H3,4,5,6,NH overlapping multiple), (6.40 (s, 1H) CH*), (5.24 (s, 1H)H1”), (1.66 (ddd, J 
= 74.7, 41.4, 13.2 Hz, 6H)H2”,4”,6”), (1.20 (dq, J = 54.4, 14.5, 12.0 Hz, 3H).H5”,3”). 13C NMR (126 MHz, dmso) δ 165.77,
164.27, 134.21, 134.13, 133.69, 131.93, 131.43, 131.22, 130.14, 130.03, 129.45, 128.01, 127.93, 73.40, 48.47, 40.49,
40.32, 40.15, 39.99, 39.82, 39.65, 39.49, 32.51, 25.58, 24.91.

4.2.15. 1-(3-chlorophenyl)-2-(cyclohexylamino)-2-oxoethyl pyrazine-2-carboxylate(P15)

Yield: 49%, mp: 139–141°C, white solid. IR (KBr disk): (3308.64 (NH amid group)), (3061.78-3029.67 (CH aromatic)),
(2938.15-2850.61(CH aliphatic)), (1738.85(C = O ester)), (1649.84(C = O amid)), (1536.92-1449.65 (C = C aromatic)),
(1133.88 (C-O)), (755.87 (C-Cl)) cm− 1. 1H NMR (300 MHz, DMSO-d6) δ (9.31 (d, J = 1.3 Hz, 1H) H6’), (9.04–8.77 (m,

2H) H3’.2’), (8.36 (d, J = 7.8 Hz, 1H)NH), (7.78–7.32 (m, 4H) H2,4,5,6 overlapping multiple), (6.13 (s, 1H) CH*, (3.66–
3.44 (m, 1H) H1”), (1.84–1.35 (m, 6H) H2”,4”,6”), (1.15 (ddd, J = 43.8, 19.5, 9.6 Hz, 4H) H5”,3”). 13C NMR (75 MHz,
DMSO) δ 165.96, 162.66, 148.47, 145.89, 144.99, 142.51, 137.83, 133.05, 130.49, 128.69, 127.15, 127.04, 125.92,
75.46, 47.81, 40.33, 40.06, 39.78, 39.50, 39.22, 38.94, 38.67, 32.16, 25.10, 24.41.

4.2.16. 1-(4-chlorophenyl)-2-(cyclohexylamino)-2-oxoethyl pyrazine-2-carboxylate(P16)

Yield: 49%, mp: 139–141°C, white solid. IR (KBr disk): (3308.64 (NH amid group)), (3061.78-3029.67 (CH aromatic)),
(2938.15-2850.61(CH aliphatic)), (1738.85(C = O ester)), (1649.84(C = O amid)), (1536.92-1449.65 (C = C aromatic)),
(1133.88 (C-O)), (755.87 (C-Cl)) cm− 1. 1H NMR (300 MHz, DMSO-d6) δ (9.30 (s, 1H) H6’), (8.88 (d, J = 20.6 Hz, 2H)
H3’,2’), (8.33 (d, J = 7.6 Hz, 1H) NH), (7.80–7.30 (m, 4H) H2,3,5.6 overlapping multiple), (6.13 (s, 1H) CH*), (3.50 (s, 1H)
H1”), (1.93–1.44 (m, 7H) H2”,4”,6”), (1.43–0.87 (m, 3H) H5”,3”). 13C NMR (75 MHz, DMSO) δ 166.10, 162.66, 148.41,
145.85, 144.97, 142.54, 134.50, 133.40, 129.18, 128.53, 75.49, 47.76, 40.32, 40.04, 39.76, 39.48, 39.20, 38.93, 38.65,
32.17, 31.97, 25.09, 24.39. Elemental analysis calcd (%) for C19H20ClN3O3 (373.12):C,61.04; H,5.39; N,11.24;found:
C,61.12;H,5.47;N,11.32.

4.2.17. 2-(cyclohexylamino)-1-(2,4-dichlorophenyl)-2-oxoethyl pyrazine-2-carboxylate(P17)

Yield: 77%, mp: 164–166°C, white solid. IR (KBr disk): (3325.35 (NH amid group)), (3061.78-3029.67 (CH aromatic)),
(2938.15-2850.61(CH aliphatic)), (1738.85(C = O ester)), (1649.84(C = O amid)), (1536.92-1449.65 (C = C aromatic)),
(1133.88 (C-O)), (755.87 (C-Cl)) cm− 1. 1H NMR (499 MHz, DMSO-d6) δ (9.26 (s, 1H) H6’), (9.03–8.78 (m, 2H) H3’,2’),
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(8.36 (d, J = 7.7 Hz, 1H) NH), (7.72 (s, 1H) H3), (7.53 (q, J = 8.7 Hz, 2H) H6,5), (6.44 (s, 1H) CH*), 3.61 (s, 1H) H1”),
(1.94–1.41 (m, 6H) H2”,4”,6”), (1.37–0.92 (m, 4H) H5”,3”). 13C NMR (126 MHz, dmso) δ 165.31, 163.10, 149.00, 146.35,
145.47, 142.77, 135.12, 135.05, 132.86, 131.48, 129.66, 128.29, 73.08, 48.56, 40.49, 40.32, 40.16, 39.99, 39.82,
39.65, 39.49, 32.50, 32.48, 25.57, 24.95, 24.91. Elemental analysis calcd (%) for C19H19Cl2N3O3 (407.08):C,55.89;
H,4.69; N,10.29;found: C,57.01;H,5.76;N,11.41.

4.2.18. 2-(cyclohexylamino)-2-oxo-1-(p-tolyl)ethyl pyrazine-2-carboxylate(p18)

Yield: 48%, mp: 180–182°C, white solid. IR (KBr disk): (3275.50 (NH amid group)), (3068.59-3037.58 (CH aromatic)),
(2939.29-2855.41 (CH aliphatic)), (1731.89 (C = O ester)), (1656.44 (C = O amid)), (1545.71-1494.55 (C = C
aromatic)), (1127.78 (C-O)) cm− 1. 1H NMR (499 MHz, DMSO-d6) δ (9.28 (s, 1H) H6’), (8.88 (d, J = 35.5 Hz, 2H) H2’.3’),

(8.22 (d, J = 7.6 Hz, 1H) NH), (7.34 (dd, J = 125.5, 7.3 Hz, 4H) H6,5,2,3), (6.08 (s, 1H) CH*), (3.51 (s, 1H) H1”, 2.49 (s, 3H)
Me group), (1.85–1.33 (m, 6H) H2”,4”,6”), (1.33–0.83 (m, 4H) H5”,3”). 13C NMR (126 MHz, dmso) δ 166.96, 163.25,
148.79, 146.24, 145.42, 143.18, 138.55, 133.05, 129.46, 127.85, 76.68, 48.20, 40.33, 40.16, 39.99, 39.83, 39.66,
39.49, 32.69, 32.50, 25.59, 24.93, 24.85, 21.24. Elemental analysis calcd (%) for C20H23N3O3 (353.17):C,67.97;
H,6.56; N,11.89;found: C,68;H,6.59;N,11.92.

4.2.19. 2-(cyclohexylamino)-2-oxo-1-phenylethyl pyrazine-2-carboxylate(P19)

Yield: 62%, mp: 172–174°C, white solid. IR (KBr disk): (3315.29 (NH amid group)), (3071.59-3030.32 (CH aromatic)),
(2933.82-2857.39 (CH aliphatic)), (1725.84 (C = O ester)), (1665.11(C = O amid)), (1549.11-1498.04 (C = C
aromatic)), (1131.69 (C-O)) cm− 1.1H NMR (300 MHz, DMSO-d6) δ (9.29 (s, 1H) H6’), (9.05–8.70 (m, 2H) H3’,2)’, (8.29

(d, J = 7.8 Hz, 1H)NH), (7.80–7.24 (m, 5H) H2,3,4,5,6), (6.09 (d, J = 18.1 Hz, 1H) CH*), (3.50 (s, 1H) H1”, (1.88–1.35
(m,6H) H2”,4”,6”), (1.41–0.84 (m,4 H) H3”,5”). 13C NMR (75 MHz, DMSO) δ 166.78, 166.38, 162.77, 148.37, 145.82,
144.96, 142.64, 135.51, 128.67, 128.46, 127.37, 76.24, 47.73, 40.32, 40.04, 39.76, 39.48, 39.20, 38.93, 38.65, 32.21,
32.01, 25.09, 24.43.. Elemental analysis calcd (%) for C19H21N3O3 (339.16):C,67.24; H,6.24; N,12.38;found:
C,67.28;H,6.28;N,12.42.

4.2.20. 1-(3-bromophenyl)-2-(cyclohexylamino)-2-oxoethyl pyrazine-2-carboxylate(P20)

Yield: 68%, mp: 142–145°C, white solid. IR (KBr disk): (3224.06 (NH amid group)), (3080.35-3025.97 (CH aromatic)),
(2933.07-2854.21(CH aliphatic)), (1739.68(C = O ester)), (1650.87(C = O amid)), (1571.77-1413.39 (C = C aromatic)),
(1164.44 (C-O)), (754.90 (C-Br)) cm− 1. 1H NMR (300 MHz, DMSO-d6) δ (9.30 (s, 1H) H6’), (8.89 (d, J = 20.3 Hz, 2H)
H2’,3’), (8.36 (d, J = 7.4 Hz, 1H) NH), (8.01–7.17 (m, 4H) H2,4,5,6), (6.09 (d, J = 18.5 Hz, 1H) CH*), (3.50 (s, 1H) H1”),
(1.91–1.41 (m, 6H) H2”,4”,6”), (1.39–0.80 (m, 4H) H5”,3”). 13C NMR (75 MHz, DMSO) δ 165.94, 162.64, 148.44, 145.87,
144.97, 142.49, 138.03, 131.58, 130.75, 130.03, 129.90, 126.34, 121.56, 75.39, 47.79, 40.32, 40.04, 39.76, 39.48,
39.21, 38.93, 38.65, 31.97, 25.07, 24.39. Elemental analysis calcd (%) for C19H21BrN3O3 (417.07):C,54.56; H,4.82;
N,10.05; found: C,54.49; H,4.75; N,9.98.

4.3. MTT assay
The synthesis compounds were tested for cytotoxic activity on cancer cell viability by MTT (3 (4,5
dimethylthiazol2yl) 2,5diphenyltetrazolium bromide) against human colon adenocarcinoma cell line (HT-29), lung
cancer epithelial cell line (A549), breast adenocarcinoma (MCF7), and human normal lung cell lines (MRC5) which
were acquired from the National Cell Bank of Iran (NCBI, Pasteur Institute, Tehran, Iran). Firstly, the cells were seeded
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in 96-well microplates with a density of 0.8 × 104 cells per well and kept for 24h to recover. The cells were then
treated in a triplicate manner with compounds (P1-P20) at varying concentrations ranging from 1 to 100 µM and
incubated in a humidified CO2 incubator for at least 72 hours at 37°C. The media was discarded entirely after
incubation and replaced with 150 µl of RPMI 1640 containing 0.5 mg/mL MTT solution and incubated for 3h at
room temperature. The media containing MTT was discarded again to dissolve the formazan crystals, and 150 µl of
DMSO was applied to each well and incubated in the dark for at least 30 min at 37 ° C. The absorbance of the
individual well was then read by ELISA reader at 490 nm. CurveExpert 1.4 was used to measure the 50% inhibitory
concentration of each compound, reflecting IC50. The data are given as mean ± SD.

4.4. Apoptosis assay
The apoptotic activity of compounds P5, and P16 was further investigated utilizing the eBioscience TM Annexin V
apoptosis detection kit and AnnexinV/PI labeling (Invitrogen) [22]. The A549 cell lines are pre-cultured for 16 hours
before being exposed to compounds over the next 24 hours. In sum, 0.5×105 cells per 1 ml of complete culture
medium were seeded in a 24-well culture plate, treated with P5, and p16 compounds in different concentrations (7,
and 14 µM), and (3, 6 µM) respectively for 24 h. Cells were washed once with phosphate buffered saline (PBS), and
once with 1000 µL 1X binding buffer. In the next step, the cells were suspended with 100 µL of binding buffer
containing 5 µL of Annexin V-fluorescein isothiocyanate for 15 minutes. Afterward, cells were rewashed with 1000
µL Binding buffer and resuspended in 200 µL of the same buffer containing 5 µL of Propodium Iodide (PI) solution.
The apoptosis rates were then determined by BD FACS CaliburTM flow cytometry (BD Biosciences, San Jose, CA,
USA). This assay can show apoptosis rates were calculated as the sum of early apoptosis and late apoptosis.

4.5. Gel electrophoresis
Gel electrophoresis analysis was performed using 500 ng plasmid, pBlu2KSM, DNA in 10 mM Tris-HCl buffer, pH 7.4
with the final concentrations of 20–150 µM complex in a total volume of 10 µl. The samples were then incubated
for 60 min at 37°C, followed by electrophoresis on 1% agarose gel in TAE buffer containing 1.0 µg ml− 1 safe stain at
100 V for 30 min and finally, photographed under UV light. To investigate the DNA-ligand ability of each compound
to unwind the supercoiled conformation of pBlu2KSM was determined by electrophoretic mobility on the native
plasmid. As expected, three different pBlu2KSM conformations were observed on the agarose gels. These were the
negative open circular form (NSC) as well as single break nicked supercoil (SSNSC) and a strong bond of the
positive twisted supercoiled (PSC) [23]. The Double-strand break of the circular supercoil transform circular DNA to
Linear (L) format with natural length of the plasmid is shown as these conformations resolve on agarose gels as
distinct bands, as shown in Fig. 2.

4.6. Molecular docking
The molecular docking study of the synthesis compounds was carried out using conventional methodology and
techniques, as detailed in the report [24]. The crystal arrangements of three-dimensional crystals Bcl-2 (PDB ID:
6qgk), and DNA (PDB ID: 1LEX) is downloaded from the protein data bank (www.rcsb.org/pdb). The protein was
prepared by removing water molecules and ligands that were not implicated in the active site and co-crystal ligands
(1-[2-] [(3S) -3-(aminomethyl)-3,4-dihydro-1H-isoquinolin-2-yl] carbonyl] phenyl] -N, N-dibutyl-5-methyl-pyrazole3-
carboxamide, and monoimidazole lexitropsin for Bcl-2, and DNA respectively) were separated from their 3D crystal
structures. Following that, using MGLTOOLS 1.5.6, the receptors were converted to PDBQT. The original synthesized
structure was drawn using ChemBioDraw (version 12.0). Each compound was optimized using molecular
mechanics (MM+) and then a quantum-based semiempirical approach for the minimization (AM1) by Hyperchem
(Version 8, Hypercube Inc., Gainesville, FL, USA) software. Following that, MGLtools was used to convert the output

http://www.rcsb.org/pdb
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results of optimized structures to PDBQT. Then, using an AutoDock 4.2 batch script (DOCKFACE) based on the
Lamarckian evolutionary process, docking was done on flexible molecules and rigid receptors. The grid box was
determined by the dimensions of (32, 30, and 28) with center grid of (1.861, 0.439, 19.153), and (40, 40, and 46) with
center grid of (10.227, 20.84, 9.478) Å for the co-crystal ligand in bcl-2, and DNA respectively. The Autodock tools
application (ADT, Version1.5.6) and PLIP (fully automated protein–ligand interaction profiler) were used to examine
the binding interactions between docked potent drugs and their targets. The lowest binding energy conformation
was chosen as the best binding mode for the AutoDock scoring system.
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Figures

Figure 1

Flow cytometry-based detection of the apoptotic properties of P5, and P16 on the A549 cell line after 24 h of
incubation with different concentrations of P5 (7 and 14 μM), and P16 (3 and 6 μM) using the Annexin V-PE/7AAD
detection kit. The percentages of apoptotic cells (Q2: late apoptotic and Q3: early apoptotic) were determined in
Annexin V + cells. Q1: necrotic cells, Q2: late apoptotic cells, Q3: early apoptotic cells, and Q4: living cells.
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Figure 2

Electrophoresis Mobility shift assay of P5, and P16. A, C) Gel electrophoresis diagram of pBlu2KSM DNA in the
presence of increasing amounts of P5, and P16. Lane 1, DNA + 150 µM ligand; lane 2, DNA + 100 µM ligand; lane 3,
DNA + 80 µM ligand; lane 4, DNA + 60 µM ligand; lane 5, DNA + 40 µM ligand; Lane 6, DNA (control); L; 1kb DNA
ladder. Nicked circular (NC) and positive (PSC), Linear (L) and negative supercoiled (NSC) of DNA are labeled,
respectively. B, D) Gel electrophoresis diagram of pBlu2KSM DNA in the presence of increasing amounts of P5, and
P16 and 1mM H2O2 (lanes 1–7). Lane 1, DNA + 1mM H2O2 +150 µM ligand; lane 2, DNA + 1mM H2O2 + 100 µM
ligand; lane 3, DNA + 1mM H2O2 + 80 µM ligand; lane 4, DNA + 1mM H2O2 + 60 µM ligand; lane 5, DNA + 1mM
H2O2 + 40 µM ligand; lane 6, DNA +1mM H2O2 (control); L; 1kb DNA ladder. Nicked circular (NC) and positive (PSC),
Linear (L) and negative supercoiled (NSC) of DNA are labeled, respectively.
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Figure 3

Interactions of P10 (A) and P16(B) with the residues in the binding site of Bcl-2 receptor. Binding mode of P10 (C)
and P16 (D) in the minor groove of DNA receptor (1LEX).
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Figure 4

Re-docking of the co-crystal ligand of A) 6qgk, and B) 1lex indicated that the X-ray crystallography conformer (the
yellow, and red for Bcl-2 and DNA, respectively) was extremely identical to the docked conformer.
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