Original Article # Expression of *p16* Marker in Colorectal Cancer and its Association with Clinicopathological Parameters in Patients with Colectomy Surgery Batool Balali ^{1,2} Parvin Kheradmand ^{1,2*}, Nastaran Ranjbari ^{1,2}, Mahin Taheri-Moghadam ³ - ¹ Department of Pathology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran - ² Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran - ³ Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran **Corresponding Author:** Parvin Kheradmand, MD, Associate Professor, Department of Pathology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Tel: +98-6133369539, E-mail: kheradmand-p@ajums.ac.ir Received September 17, 2021; Accepted December 18, 2021; Online Published September 10, 2022 #### Abstract **Introduction:** Colorectal Cancer (CRC) is a genetic disease with complex and diverse pathways. The p16 is a tumor-inhibiting gene that acts as a regulator of the cell cycle. Therefore, the present study aimed to investigate the expression of the p16 marker in CRC and its relationship with clinical and pathological parameters. **Materials and Methods:** In this retrospective study, paraffin blocks of tumors of consecutive CRC patients registered in the histopathology laboratory of hospitals under the auspices of Ahvaz Jundishapur University of Medical Sciences were used. Clinicopathological information such as the degree of tumor differentiation, tumor depth of invasion, lymph node involvement status, etc. were extracted from the patient's files and pathology reports and using paraffin blocks, specific staining for *p16* factor was performed using immunohistochemistry. Data were analyzed by SPSS software. **Results:** In the immunohistochemistry technique from 38 samples, the staining rate of P16 marker: 13 samples (34.2%) scored 3, 12 samples (31.6%) scored 2, seven samples (18.4%) scored 1 and six samples (15.8%) scored zero. Also, the staining intensity was severe in 10 cases (26.3%), moderate in 14 cases (36.8%), mild in 8 cases (21.1%), and negative in 6 cases (15.8%). The amount and intensity of staining for the p16 factor in the immunohistochemistry technique were not associated with sex, age, tumor location, tumor differentiation rate, tumor depth of invasion, lymph node involvement, lymph vascular invasion, and perineural invasion (p>0.05). Tumor size was not significantly associated with staining rate but was significantly associated with staining intensity (p<0.05), so that in cases with a larger tumor size, staining intensity was lower **Conclusions:** Despite the positive expression of *P16* in 84.2% of colorectal cancer cases, its expression was not associated with clinical and pathological parameters. Keywords: Colorectal Cancer, p16 Marker, Immunohistochemistry, Clinicopathological Parameter **Citation:** Balali B, Kheradmand P, Ranjbari N, Taheri-Moghadam M. Expression of *p16* Marker in Colorectal Cancer and its Association with Clinicopathological Parameters in Patients with Colectomy Surgery. J Appl Biotechnol Rep. 2022;9(3):719-25. doi:10.30491/JABR.2021.302762.1440 # Introduction Colorectal Cancer (CRC) is the third most common cancer in the world after lung cancer and breast cancer. In 2018, more than 10% of all new cancer cases was attributed to CRC, with approximately 1.8 million reported cases. ^{1,2} The mortality rate for this cancer in both sexes and all ages is 9.2% of all cancer deaths. ³ In 2018, CRC was responsible for 9864 new cases (in both men and women) out of 110115 new cases of all cancers (9%) in Iran, which was the third most common cancer after breast cancer (12.5%) and gastric cancer (10.6%). ^{4,5} CRC is a genetic disease which occurs in the normal mucosa of the large intestine through different molecular mechanisms. ⁶ First, chromosomal instability occurs through cumulative genetic mutations in many tumor suppressor genes such as *K-ras*, *p53*, *c-Myc*, *and Cyclin-D*, which are responsible for approximately 80% of sporadic infections. Second, the microsatellite instability pathway, which is characterized by genetic changes in genes related to DNA repairing (responsible for repairing deletions, and incorrect bases during DNA replication and recombination by avoiding mutations in frame change and open replacement). This event usually occurs sporadically in 10-15% of cases. Third is the lynch syndrome, which causes 3% of diseases. Finally, familial adenomatous polyposis syndrome accounts for 1% of CRC cases. *P16* is a tumor suppressor gene which is now recognized as the second most common point of mutation in human cancer. ^{12,13} The *p16* tumor suppressor gene binds to CD4/6 and prevents its interaction with cyclin D. Finally, this reaction inhibits cell cycle progression from stage G1 to S. ^{14,15} Thus, the p16 is a key element in oncogenesis and cell aging processes. Decreased p16 regulation by hypermethylation, point mutation, or gene deletion leads to cell cycle progression; ^{16,17} while the activation of this gene is associated with cell aging. As a tumor suppressor gene, p16 is inactive in many tumors and is closely related to tumor formation and progression. ^{18,19} Inactivation of p16 has been reported in CRC, oropharyngeal cancer, pancreatic cancer, esophageal cancer, non-small cell lung cancer and mesothelioma. Due to the contradictory results in terms of the relationship between p16 expression with clinicopathological parameters in various studies in the world and also few studies conducted in Iran, therefore the aim of this study was to investigate the expression pattern of the p16 marker in CRC and its relationship with clinical and pathological parameters in patients referred to hospitals affiliated to Ahvaz Jundishapur University of Medical Sciences. # **Materials and Methods** # Case Selection and Tissue Samples The present cross sectional study used a descriptiveanalytical method. The pathologic records of colorectal carcinoma were retrieved from the archive of the Pathology Department, Imam Khomeini Hospital, Ahvaz, Iran between the years 2018-2020. The hematoxylin-eosin stained slides were reviewed. Inclusion criteria were adequate tumoral mass, absence of necrosis/hemorrhage, presence of lymph node pathologic slides, and complete medical records. The total number of colorectal adenocarcinoma paraffin samples during the years 2018 to 2020 were considered as the sample size. Based on the inclusion criteria, 38 formalin-fixed, paraffin-embedded samples were enrolled. Clinical information including sex, age, tumor location, tumor size, tumor differentiation degree, depth of tumor invasion, lymph node status, vascular invasion (lymph vascular) and perineural invasion were extracted from patients' pathology report and were recorded in a checklist. # Immunohistochemical Assay The 5-μm paraffinized sections were soaked in water-alcohol solution for 5 min. Slides were placed in a microwave oven for 30 min at 60 °C. Deparaffinization was performed by soaking the slides in xylene (Merck, Germany) and, then, alcohol (from 100% to 75% concentration) for 5 to 10 min. Sections were rinsed with 10% phosphate-buffered saline (PBS; Yekta Tajhiz Azma, Iran), followed by H₂O₂/methanol (1:9) and 10% PBS for 10 min. Then, the slides were heated in a microwave oven for 10 min in ethylenediaminetetraacetic acid (EDTA; Yekta Tajhiz Azma, Iran). The samples were left to reach the room temperature; then, were rinsed with PBS. Sections were incubated with 1 μg/ml diluted *p16* primary anti-mouse monoclonal antibody for an hour at room temperature (clone E6H4, Ventana Medical Systems, Inc. Tucson, AZ) and, then, were reincubated with biotinylated antibody for 30 min and soaked in 10% PBS for 10 min. Sections were incubated with conjugated enzyme for 30 min and developed in 3, 3'diaminobenzidinehydrochloride chromogen (Dako, code K3468, USA). The haematoxylin stain (Yekta Tajhiz Azma, Iran) was used to develop the ground contrast. Positive staining for p16 was interpreted as the presence of brown spots on the nucleus/cytoplasm of cells. 21-23 The percentage of cells stained brown compared to cells stained blue was then determined in each tissue. Every tumor was given a score according to the intensity of the nuclear or cytoplasmic staining. Positive staining for p16 was interpreted as the presence of brown spots on the nucleus/cytoplasm of cells. The percentage of cells stained brown compared to cells stained blue was then determined in each tissue. The staining intensity of p16 marker was scored negatively (0), weak (+1), medium (+2) and strong (+3). Also, the extent of staining of p16 marker in terms of percentage of stained cells was scored as follows:24 - Negative staining (score 0) - Immune staining in <10% of cells (score 1) - Immune staining in 10%-40% of cells (score 2) - Immune staining in >40% of cells (score 3) ## Statistical Analysis Descriptive statistics including mean index and standard deviation for quantitative variables and frequency and percentage for qualitative variables were used. Normal distribution of the quantitative data was checked with the Kolmogorov–Smirnov test. Differences in staining degree and staining intensity in variables were analyzed using one-way analysis of variance (ANOVA), Chi-squared test and Kruskal-Wallis test. Significance level *p*<0.05 and all analyzes were performed using SPSS software version 22. ## **Results** In the present study, a colectomy sample of 38 patients with CRC with a mean age of 55 ± 13.34 was examined. Among these patients, 20 cases (52.6%) were female and 18 cases (47.4%) were male. The distribution of gender and clinical characteristics and pathology of patients are shown in Table 1. The mean age and size of the tumor are also presented in Table 2. In terms of tumor grade, the frequency of G2 grade was the highest (52.6%). Regarding the depth of tumor invasion, the majority of patients (23 cases; 60.5%) were in PT3 stage. The tumor was located in 34.2% of the rectum, 36.8% of the sigmoid, 23.7% of the transverse and descending colon, and 5.3% of the cecum. In terms of lymph node involvement, the majority of patients (55.3%) had PN0 and the rest PN1a (2.6%), PN1b (15.8%), PN1c (7.9%), PN2a (7.9%), and PN2b (10.5%). Vascular invasion and perineural invasion Table 1. Distribution of Gender, Clinical Characteristics and Pathology of Patients | of Patients | | | |-------------|---------|---------------------| | Variable | | Frequency (Percent) | | Gender | Female | 20 (52.6) | | | Male | 18 (47.4) | | Grade tumor | G1 | 13 (34.2) | | | G2 | 20 (52.6) | | | G3 | 5 (13.2) | | Depth of | PT1 | 1 (2.6) | | tumor | PT2 | 4 (10.5) | | | PT3 | 23 (60.5) | | | PT4a | 6 (15.8) | | | PT4b | 3 (7.9) | | | PTis | 1 (2.6) | | Tumor site | Rectum | 13 (34.2) | | | Sigmoid | 14 (36.8) | | | Colon | 9 (23.7) | | | Cecum | 2 (5.3) | | Lymph node | PN0 | 21 (55.3) | | involvement | PN1a | 1 (2.6) | | | PN1b | 6 (15.8) | | | PN1c | 3 (7.9) | | | PN2a | 3 (7.9) | | | PN2b | 4 (10.5) | | Vascular | No | 21 (55.3) | | invasion | Yes | 17 (44.7) | | Perineural | No | 25 (65.8) | | invasion | Yes | 13 (34.2) | were observed in 44.7% and 34.2% of patients, respectively (Table 1). The minimum age of patients was 29 years and the maximum age was 81 years. The mean tumor size was 5.17 ± 2.45 , the minimum size was 1.5 cm and the maximum size was 11 cm. The results of immunohistochemical staining marker p16 showed that out of the 38 studied samples, 13 samples (34.2%) had a score of 3, 12 samples (31.6%) had a score of 2, seven samples (18.4%) had scores 1 and six (15.8%) had a score of 0. The results related to the staining intensity of the p16 marker indicated that out of 38 samples studied, the staining intensity in 10 cases (26.3%) was severe, in 14 cases (36.8%) moderate, in eight cases (21.1%) was mild and six cases (15.8%) was negative (Figure 1). The results of Chi-square test showed that there was no significant relationship between variables gender, tumor location, tumor grade (well, moderate and poorly differentiated), depth of tumor invasion, lymph node involvement, vascular invasion and perineural invasion with immunohistochemical Table 2. Relationship of Age and Gender with Staining Degree and Staining Intensity | V | | Age | Gender (%) | | | |--------------------|----------|-------------------|------------|--------|------------------| | Variable | | (Mean ± SD) | Female | Male | — <i>p</i> value | | Staining Degree | 0 | 54.16 ± 10.10 | 4 (20) | 2 (11) | <i>p</i> >0.05 | | | 1 | 48.28 ± 14.34 | 4 (20) | 3 (16) | | | | 2 | 58.75 ± 16.17 | 5 (25) | 7 (38) | | | | 3 | 56.53 ± 12.28 | 7 (35) | 6 (33) | | | Staining Intensity | Intense | 53.70 ± 11.12 | 6 (30) | 4 (22) | <i>p</i> >0.05 | | | Medium | 60.00 ± 15.99 | 6 (30) | 8 (44) | | | | Mild | 50.12 ± 14.35 | 4 (20) | 4 (22) | | | | Negative | 54.16 ± 10.10 | 4 (20) | 2 (11) | | **Figure 1.** Representative of p16 Immunostaining in Colorectal Cancer. IHC staining for p16 expression of colorectal cancer was evaluated in different staining degree and staining intensity separately. From the above left: (A) Negative expression of P16 marker in normal colon compared with positive expression of this marker in colorectal cancer; (B) High expression (score 3) and strong intensity of P16 marker in colorectal cancer; (C) Low expression (score 1) and poor severity of P16 marker in colorectal cancer. Table 3. Relationship between Tumor Site with Staining Degree and Staining Intensity | Variable | | | nyalua | | | | |--------------------|----------|------------|-----------|-------------|-----------|------------------| | variable | | Rectum (%) | Cecum (%) | Sigmoid (%) | Colon (%) | – <i>p</i> value | | Staining Degree | 0 | 3 (23.1) | 0 (0.0) | 2 (14.3) | 1 (11.1) | 0.457 | | | 1 | 0 (0.0) | 1 (50) | 3 (21.4) | 3 (33.3) | | | | 2 | 3 (23.1) | 1 (50) | 5 (35.7) | 3 (33.3) | | | | 3 | 7 (53.8) | 0 (0.0) | 4 (28.6) | 2 (22.2) | | | Staining Intensity | Intense | 4 (30.8) | 0 (0.0) | 4 (28.6) | 2 (22.2) | 0.884 | | | Medium | 5 (38.5) | 1 (50) | 4 (28.6) | 4 (44.4) | | | | Mild | 1 (7.7) | 1 (50) | 4 (28.6) | 2 (22.2) | | | | Negative | 3 (23.1) | 0 (0.0) | 2 (14.3) | 1 (11.1) | | Table 4. Relationship between Tumor Differentiation and Tumor Size with Staining Degree and Staining Intensity | Variable | | Tumor Size | Differentiation | | | |--------------------|----------|-----------------|-----------------|--------|---------| | variable | | (Mean ± SD) | G1 (%) | G2 (%) | G3 (%) | | Staining Degree | 0 | 5.91 ± 2.59 | 1 (7.7) | 4 (20) | 1 (20) | | | 1 | 6.50 ± 2.39 | 1 (7.7) | 3 (15) | 3 (60) | | | 2 | 5.08 ± 2.36 | 5 (38.5) | 6 (30) | 1 (20) | | | 3 | 4.21 ± 2.34 | 6 (46.2) | 7 (35) | 0 (0.0) | | | Intense | 4.18 ± 2.63 | 5 (38.85) | 5 (25) | 0 (0.0) | | Staining Intensity | Medium | 4.21 ± 1.25 | 5 (38.5) | 8 (40) | 1 (20) | | , | Mild | 7.56 ± 2.22 | 2 (15.4) | 3 (15) | 3 (60) | | | Negative | 5.91 ± 2.59 | 1 (7.7) | 4 (20) | 1 (20) | Table 5. Relationship between Depth of Tumor with Staining Degree and Staining Intensity | Variable | • | Depth of Tumor | | | | | | | |-----------|----------|----------------|----------|----------|----------|----------|----------|------------------| | variable | | PT1 (%) | PT2 (%) | PT3 (%) | PT4a (%) | PT4b (%) | PTis (%) | - <i>p</i> value | | Staining | 0 | 0 (0.0) | 0 (0.0) | 4 (17.4) | 2 (33.3) | 0 (0.0) | 0 (0.0) | 0.403 | | Degree | 1 | 0 (0.0) | 0 (0.0) | 5 (21.7) | 2 (33.3) | 0 (0.0) | 0 (0.0) | | | | 2 | 0 (0.0) | 2 (50.0) | 6 (21.1) | 1 (16.7) | 3 (100) | 0 (0.0) | | | | 3 | 1 (100) | 2 (50.0) | 8 (34.8) | 1 (16.7) | 0 (0.0) | 1 (100) | | | Staining | Intense | 1 (100) | 1 (25.0) | 6 (26.1) | 1 (16.7) | 0 (0.0) | 1 (100) | 0.315 | | Intensity | Medium | 0 (0.0) | 3 (75.0) | 9 (39.1) | 0 (0.0) | 2 (66.7) | 0 (0.0) | | | | Mild | 0 (0.0) | 0 (0.0) | 4 (17.4) | 3 (50.0) | 1 (33.3) | 0 (0.0) | | | | Negative | 0 (0.0) | 0 (0.0) | 4 (17.4) | 2 (33.3) | 0 (0.0) | 0 (0.0) | | Table 6. Relationship between Lymph Node Involvement with Staining Degree and Staining Intensity | Variable | | Lymph Node Involvement | | | | | | | |-----------|----------|------------------------|----------|----------|----------|----------|----------|----------------| | variable | | PN0 (%) | PN1a (%) | PN1b (%) | PN1c (%) | PN2a (%) | PN2b (%) | <i>p</i> value | | Staining | 0 | 4 (19) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (33.3) | 1 (25.0) | 0.100 | | Degree | 1 | 1 (4.8) | 1 (100) | 1 (16.7) | 1 (33.3) | 0 (0.0) | 3 (75.0) | | | | 2 | 8 (38.1) | 0 (0.0) | 3 (50.0) | 1 (33.3) | 0 (0.0) | 0 (0.0) | | | | 3 | 8 (38.1) | 0 (0.0) | 2 (33.3) | 1 (33.3) | 2 (66.7) | 0 (0.0) | | | Staining | Intense | 4 (19) | 1 (100) | 2 (33.3) | 1 (33.3) | 2 (66.7) | 0 (0.0) | 0.144 | | Intensity | Medium | 11 (52.4) | 0 (0.0) | 2 (33.3) | 1 (33.3) | 0 (0.0) | 0 (0.0) | | | | Mild | 2 (9.5) | 0 (0.0) | 2 (33.3) | 1 (33.3) | 0 (0.0) | 3 (75.0) | | | | Negative | 4 (19) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (33.3) | 1 (25.0) | | Table 7. Relationship between Vascular and Perineural Invasion with Staining Degree and Staining Intensity | Variable | | Perineura | Perineural Invasion | | Invasion | |-----------|----------|------------|---------------------|------------|-----------| | variable | | No (%) | Yes (%) | No (%) | Yes (%) | | Staining | 0 | 5 (%20.0) | 1 (%7.7) | 3 (%14.3) | 3 (%17.6) | | Degree | 1 | 4 (%16.0) | 3 (%23.1) | 1 (%4.8) | 6 (%35.3) | | Ü | 2 | 7 (%28.0) | 5 (%38.5) | 8 (%38.1) | 4 (%23.5) | | | 3 | 9 (%36.0) | 4 (%30.8) | 9 (%42.9) | 4 (%23.5) | | Staining | Intense | 6 (%24.0) | 4 (%30.8) | 5 (%23.8) | 5 (%29.4) | | Intensity | Medium | 10 (%40.0) | 4 (%30.8) | 11 (%52.4) | 3 (%17.6) | | • | Mild | 4 (%16.0) | 4 (%30.8) | 2 (%9.5) | 6 (%35.5) | | | Negative | 5 (%20.0) | 1 (%7.7) | 4 (%14.3) | 3 (%17.6) | staining marker p16 (p>0.05). Also, the results of Chi-square test showed that there was no significant relationship between variables gender, tumor location, tumor grade (well, moderate and poorly differentiated), depth of tumor invasion, lymph node involvement, vascular invasion and perineural invasion with the staining intensity of the p16 marker (p>0.05) (Tables 3-7). The results of Kruskal-Wallis test demonstrated that there was no significant relationship between tumor size and staining (p>0.05). The results of Kruskal-Wallis test indicated that there was a significant relationship between tumor size and staining intensity, so that in cases with a larger tumor size, staining intensity was lower (p<0.05) (Table 4). The results of one-way ANOVA test presented that there was no significant relationship between age and staining rate (p>0.05). Also, there was no significant relationship between age and staining intensity (p>0.05) (Table 2). ### Discussion In the present study, the expression of P16 marker in 38 colorectal cancer samples and its relationship with clinical and pathological parameters were studied. Staining of samples for p16 marker in immunohistochemical technique showed, 32 positive samples (88.8%) and six negative samples (15.78%). Out of 32 positive samples, 13 samples (34.2%) had a score of 3, 12 samples (31.6%) had a score of 2 and seven samples (18.4%) had a score of 1. Staining intensity was severe in 10 cases (26.3%), moderate in 14 cases (36.8%), mild in eight cases (21.1%) and negative in six cases (15.8%). The findings of the present study did not show a significant relationship between p16 expression and pathological findings of CRC. In the study by Al-Ahwal et al. (2016), high expression of p16 was observed in 4, 14.6, 30.4, and 28% of cases of normal mucosa, adenoma, CRC and nodal metastasis, respectively. In CRC samples, p16 positive immunohistochemical staining was observed in 142/193 samples (73.6%), which was scored 1 in 84/142 (59.1%), 2 in 40/142 (28.2%) and finally 3 in 18/142 (7.12%). Negative staining of p16 was also observed in 51/193 (26.4%) patients. The values reported in the above study are similar to the present study, however, the frequency of staining of score 1 in the above study and scores 2 and 3 in the present study were higher.²⁵ In the study of Stockmar-Von Wangenheim et al. (2008), the rate of positive staining of p16 in 200 CRC samples was 94%.26 In the study of Zhao et al. (2003), out of 74 CRC samples, 73 (98.6%) were positive for p16 immunohistochemistry.²⁷ Positive expression of p16 in the study of Cui et al. (2004) in Japan 38%, in the study of Tada et al. (2003) in Japan 98%, In the study of Norrie et al. (2003) in Australia 92% and in the study of McKay et al. (2002) in the UK was 74%. The findings of a number of the above studies in terms of positive expression of p16 in the immunohistochemical technique are similar to the present study. However, differences in the expression values reported in different studies may be related to various factors, including the number of patients tested for p16 staining, the p16 antibody used, the method of incision, and the immunohistochemical method. Heidari et al.'s study (2017) demonstrated that the expression of P16 in adenocarcinoma, adenomatous, and normal colorectal tissues was 25.40%, 50.00%, and 69.50%, respectively.²⁸ The results of the present study showed that the amount and intensity of staining in immunohistochemistry technique had no significant relationship with gender and age. In the study of Al-Ahwal et al. (2016), 25 on 191 CRC samples, p16 expression in CRC samples had no significant relationship with age and gender, which is similar to the present study. Also in Stockmar-Von Wangenheim et al.'s study $(2008)^{26}$ on 200 CRC samples, p16 expression in immunohistochemistry technique had no significant relationship with age and gender, which is consistent with the present study. However, in a study by Lam et al. $(2008)^{29}$ on 194 CRC samples, positive p16 staining in immunohistochemistry was higher in men than women (86% vs. 73%) but had no significant relationship with age. Of the p16 positive samples, a strong expression pattern was observed in 53 cases and a weak expression pattern in 20 cases. Also, the results of the present study showed that the amount and intensity of staining in immunohistochemistry technique has no significant relationship with gender and age, which is similar to the above studies. The results of our study showed that the intensity of staining for p16 factor in immunohistochemistry technique was not significantly related to tumor location. Also, the level of staining was not significantly related to tumor size, but the intensity of staining was significantly related to tumor size, so that in cases with a larger tumor size, the intensity of staining was lower. In the study of Al-Ahwal et al. (2016), 25 p16 expression in CRC samples had no significant relationship with tumor location and tumor size. Positive expression of p16 in the study of Cui et al. $(2004)^{30}$ in Japan also had no significant relationship with tumor size, tumor location and tumor type. However, in the study of Lam et al. (2008), 29 positive staining of p16 in immunohistochemistry technique had a significant relationship with tumor location but had no significant relationship with tumor size and tumor type. The results of our study showed that the amount and intensity of staining in immunohistochemistry technique had no significant relationship with the degree of tumor differentiation, depth of tumor invasion and lymph node involvement. In the study of Al-Ahwal et al. (2016), p16 expression in CRC samples had no significant relationship with tumor location and tumor size.²⁵ Positive expression of p16 in the study of Cui et al. (2004) in Japan also had no significant relationship with tumor size, tumor location and tumor type.³⁰ However, in the study of Lam et al. (2008), positive staining of p16 in immunohistochemistry technique had a significant relationship with tumor location but had no significant relationship with tumor size and tumor type.²⁹ Due to the existing inconsistencies, more studies with larger sample sizes are needed in this regard. The results of our study showed that the amount and intensity of staining in immunohistochemistry technique was not significantly related to tumor differentiation, depth of tumor invasion and lymph node involvement. In a study by Ayhan et al. (2010) on 44 cases of colon adenoma and 44 cases of adenocarcinoma, there was no association between p16 expression and clinical features and prognostic data such as stage or lymph node/liver metastasis.³¹ In the study of Al-Ahwal et al. (2016) on 191 CRC samples, p16 expression in CRC samples was not significantly associated with tumor grade, invasion depth (PT), nodal metastasis, distant metastasis and lymph vascular invasion. In the study of Huh et al. (2010) on 356 patients with colorectal adenocarcinoma, the expression of p16 immunohistochemistry was not significantly associated with clinical and pathological findings. In the study of Zhao et al. (2003) on 74 CRC samples, the expression of p16 was not significantly associated with the stage of cancer. Positive expression of p16 in the study of Cui et al. (2004) in Japan also had no significant relationship with the stage, degree of differentiation and involvement of lymph nodes. The findings of the mentioned studies, which show that the expression of p16 is not related to pathological and clinical findings, are consistent with the results of the present study. Contrary to the findings of the present study, in a study by Stockmar-Von Wangenheim et al. (2008) which was done on 200 CRC samples, cytoplasmic expression of p16 decreased in advanced pN stages (lymph node involvement) but was not significantly associated with growth pattern, stage, degree of differentiation and prognosis of CRC. 33 A study by Tada et al. (2003) in Japan also found that p16 immune expression decreased in CRC in mucosal tumors, grade 3 tumor, advanced stage T, and lymphatic invasion. 34 A meta-analysis study by Ning Zhou et al. (2018) showed that contrary to the results of the present study p16 protein expression was significantly associated with the Dukes stage, lymph node metastasis, tumor location, and tumor lymph node metastasis-stage of CRC.³⁵ Also, a similar study by HE Qian-qian (2015) demonstrated that p16 expression was closely linked with Dukes' staging, lymph node metastasis and histological differentiation degrees.³⁶ Another study by Heidari et al. (2017) indicated that p16 expression was significantly higher in non-neoplastic tissues compared to the adenomatous and colorectal tissues. There was a significant association between p16 expression and differentiation grade and the primary location of the tumor.²⁸ The findings of the present study did not show a significant relationship between p16 expression and pathological findings of CRC. ## Conclusion The results of the present study showed that the amount and severity of staining in immunohistochemistry technique had no significant relationship with sex, age, tumor location, tumor differentiation rate, tumor invasion depth, lymph node involvement, vascular invasion and perineural invasion. Tumor size was not significantly associated with staining rate, but was significantly associated with staining intensity, so that in cases with larger tumor size, staining intensity was lower. # **Authors' Contributions** Study concept and design by PK.; Analysis and interpretation of data by NR and MT; Drafting of the manuscript by BB; Critical revision of the manuscript for important intellectual content by PK, NR, and MT; Statistical analysis by BB. # **Ethics Approval** The study was accepted by the Ethics Committee of Ahvaz Jundishapur University of Medical Sciences. (IR.AJUMS. HGOLESTAN.REC.1399.126). Written, informed consent was obtained from each patient. ## **Conflict of Interest Disclosures** The authors declare that they have no conflicts interest. # Acknowledgment This article has been extracted from the final thesis of Dr. Batool Balali for his course of pathology residency with registration number CRC-9924. This study was supported by Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. ## References - Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol. 2019;14(2):89-103. doi:10.51 14/pg.2018.81072 - Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. doi:10.3322/caac.21660 - 3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6):394-424. doi:10.3322/caac.21492 - 4. Khanali J, Kolahi AA. National and subnational cancer incidence for 22 cancer groups, 2000 to 2016: a study based on cancer registration data of Iran. J Cancer Epidemiol. 2021;2021:6676666. doi:10.1155/2021/6676666 - 5. Akbari A, Khayamzadeh M, Salmanian R, Motlagh AG, Roshandel G, Nouri M, et al. National cancer mortality-to-incidence ratio (MIR) in Iran (2005-2014). International Journal of Cancer Management. 2019;12(6): e94145. doi:10.5812/ijcm.94145 - 6. Farhood B, Geraily G, Alizadeh A. Incidence and mortality of various cancers in Iran and compare to other countries: a review article. Iran J Public Health. 2018; 47(3):309-16. - Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138(6):2059-72. doi:10.1053/j.gastro.2009.12.065 - 8. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135(4):1079-99. doi:10.1053/j.gastro.2008.07.076 - 9. Malki A, ElRuz RA, Gupta I, Allouch A, Vranic S, Al Moustafa AE. Molecular mechanisms of colon cancer progression and metastasis: recent insights and advancements. Int J Mol Sci. 2020;22(1):130. doi:10.33 90/ijms22010130 - Rao CV, Yamada HY. Genomic instability and colon carcinogenesis: from the perspective of genes. Front Oncol. 2013;3:130. doi:10.3389/fonc.2013.00130 - Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. - 2010;138(6):2044-58. doi:10.1053/j.gastro.2010.01.054 - Li J, Poi MJ, Tsai MD. Regulatory mechanisms of tumor suppressor P16INK4A and their relevance to cancer. Biochemistry. 2011;50(25):5566-82. doi:10.1021/bi2006 42e - 13. Heinzel PA, Balaram P, Bernard HU. Mutations and polymorphisms in the p53, p21 and p16 genes in oral carcinomas of Indian betel quid chewers. Int J Cancer. 1996;68(4):420-3. doi:10.1002/(SICI)1097-0215(199611 15)68:4<420::AID-IJC3>3.0.CO;2-2 - Goel S, DeCristo MJ, McAllister SS, Zhao JJ. CDK4/6 inhibition in cancer: beyond cell cycle arrest. Trends Cell Biol. 2018;28(11):911-25. doi:10.1016/j.tcb.2018.07.002 - Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife. 2014;3:e2872. doi:10.7 554/eLife.02872 - LaPak KM, Burd CE. The Molecular Balancing Act of p16lNK4a in Cancer and Agingp16lNK4a in Cancer and Aging. Mol Cancer Res. 2014;12(2):167-83. doi:10.1 158/1541-7786.MCR-13-0350 - 17. Romagosa C, Simonetti S, Lopez-Vicente L, Mazo A, Lleonart ME, Castellvi J, et al. p16lnk4a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene. 2011;30 (18):2087-97. doi:10.1038/onc.2010.614 - Rayess H, Wang MB, Srivatsan ES. Cellular senescence and tumor suppressor gene p16. Int J Cancer. 2012;130 (8):1715-25. doi:10.1002/ijc.27316 - Zhao R, Choi BY, Lee MH, Bode AM, Dong Z. Implications of genetic and epigenetic alterations of CDKN2A (p16INK4a) in cancer. EBioMedicine. 2016; 8:30-9. doi:10.1016/j.ebiom.2016.04.017 - Pezzuto A, D'Ascanio M, Ricci A, Pagliuca A, Carico E. Expression and role of p16 and GLUT1 in malignant diseases and lung cancer: A review. Thorac Cancer. 2020;11(11):3060-70. doi:10.1111/1759-7714.13651 - 21. Hashmi AA, Younus N, Naz S, Irfan M, Hussain Z, Shaikh ST, et al. p16 immunohistochemical expression in head and neck squamous cell carcinoma: Association with prognostic parameters. Cureus. 2020;12(6):e8601. doi:10.7759/cureus.8601 - 22. Jedpiyawongse A, Homcha-em P, Karalak A, Srivatanakul P. Immunohistochemical overexpression of p16 protein associated with cervical cancer in Thailand. Asian Pac J Cancer Prev. 2008;9(4):625-30. - 23. de C. Ferreira C, Dufloth R, de Carvalho AC, Reis RM, Santana I, Carvalho RS, et al. Correlation of p16 immunohistochemistry with clinical and epidemiological features in oropharyngeal squamous-cell carcinoma. Plos One. 2021;16(6):e0253418. doi:10.1371/journal.pone.0 - Carneiro FP, Amorim RF, de Vasconcelos Carneiro M, de Castro TM, de Souza Vianna LM, Takano GH, et al. P16 as a marker of carcinoma in effusions and peritoneal washing. BMC Cancer. 2020;20(1):225. doi:10.1186/s12 ## 885-020-6670-5 - 25. Al-Ahwal M, Gomaa W, Emam E, Qari Y, Buhmeida A, Radwi S, et al. p16 protein is upregulated in a stepwise fashion in colorectal adenoma and colorectal carcinoma. Saudi J Gastroenterol. 2016;22(6):435-40. doi:10.41 03/1319-3767.195560 - 26. Stockmar-Von Wangenheim V, Caroline AS, Munig SP, Schneider PM, Landsberg S, Drebber U, et al. p16, cyclin D1 and Rb expression in colorectal carcinomas: Correlations with clinico-pathological parameters and prognosis. Mol Med Rep. 2008;1(1):27-32. doi:10.3892/mmr.1.1.27 - 27. Zhao P, Hu YC, Talbot IC. Expressing patterns of p16 and CDK4 correlated to prognosis in colorectal carcinoma. World J Gastroenterol. 2003;9(10):2202-6. doi:10.3 748/wjg.v9.i10.2202 - 28. Heidari Z, Mahmoudzadeh-Sagheb H, Charkhat Gorgich EA. Immunohistochemical expression of P16ink4a in colorectal adenocarcinoma compared to adenomatous and normal tissue samples: A study on southeast iranian samples. Iran Red Crescent Med J. 2017;19:e15174. doi:10.5812/ircmj.15174 - 29. Lam AK, Ong K, Giv MJ, Ho YH. p16 expression in colorectal adenocarcinoma: marker of aggressiveness and morphological types. Pathology. 2008;40(6):580-5. doi:10.1080/00313020802320713 - 30. Cui X, Shirai Y, Wakai T, Yokoyama N, Hirano S, Hatakeyama K. Aberrant expression of pRb and p16INK4a, alone or in combination, indicates poor outcome after resection in patients with colorectal carcinoma. Hum Pathol. 2004;35(10):1189-95. doi:10.1016/j.humpath.2004.06.010 - 31. Ayhan S, Isisag A, Saruc M, Nese N, Demir MA, Kucukmetin NT. The role of pRB, p16 and cyclin D1 in colonic carcinogenesis. Hepatogastroenterology. 2010;57(98):251-6. - 32. Al-Ahwal M, Gomaa W, Emam E, Qari Y, Buhmeida A, Radwi S, et al. p16 protein is upregulated in a stepwise fashion in colorectal adenoma and colorectal carcinoma. Saudi J Gastroenterol. 2016;22(6):435-40. doi:10.41 03/1319-3767.195560 - 33. Huh JW, Lee JH, Kim HR. Expression of p16, p53, and Ki-67 in colorectal adenocarcinoma: a study of 356 surgically resected cases. Hepatogastroenterology. 2010; 57(101):734-40. - 34. Tada T, Watanabe T, Kazama S, Kanazawa T, Hata K, Komuro Y, et al. Reduced p16 expression correlates with lymphatic invasion in colorectal cancers. Hepato gastroenterology. 2003;50(54):1756-60. - Zhou N, Gu Q. Prognostic and clinicopathological value of p16 protein aberrant expression in colorectal cancer: A PRISMA-compliant Meta-analysis. Medicine. 2018;97 (12):e0195. doi:10.1097/MD.0000000000010195 - 36. Qian-Qian HE. Expression of p16 in human colorectal cancer and its clinical significance. J Int Transl Med. 2015;3:77-80.